PSO Advances and Application to Inverse Problems
نویسندگان
چکیده
Particle swarm optimization (PSO) is a Swarm Intelligence technique used for optimization motivated by the social behavior of individuals in large groups in nature. The damped mass-spring analogy known as the PSO continuous model allowed us to derive a whole family of particle swarm optimizers with different properties with regard to their exploitation/exploration balance. Using the theory of stochastic differential and difference equations, we fully characterize the stability behavior of these algorithms. PSO and RR-PSO are the most performant algorithms of this family in terms of rate of convergence. Other family members have better exploration capabilities. The so called four point algorithms use more information of previous iterations to update the particles positions and trajectories and seem to be more exploratory than most of the 3 points versions. Finally, based on the done analysis, we can affirm that the PSO optimizers are not heuristic algorithms since there exist mathematical results that can be used to explain their consistency/convergence.
منابع مشابه
Solving random inverse heat conduction problems using PSO and genetic algorithms
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...
متن کاملInverse Modeling in Geoenvironmental Engineering Using a Novel Particle Swarm Optimization Algorithm
Algorithms derived by mimicking the nature are extremely useful for solving many real world problems in different engineering disciplines. Particle swarm optimization (PSO) especially has been greatly acknowledged for its simplicity and efficiency in obtaining good solutions for complex problems. However, premature convergence of the standard PSO and many of its variants is a downside particula...
متن کاملParticle Swarm Optimization: A Powerful Family of Stochastic Optimizers. Analysis, Design and Application to Inverse Modelling
Inverse problems are ill-posed: the error function has its minimum in a flat elongated valley or surrounded by many local minima. Local optimization methods give unpredictable results if no prior information is available. Traditionally this has generated mistrust for the use of inverse methods. Stochastic approaches to inverse problems consists in shift attention to the probability of existence...
متن کاملApplication of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems
The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...
متن کاملDESIGN AND APPLICATION OF A HYBRID META-HEURISTIC OPTIMIZATION ALGORITHM BASED ON THE COMBINATION OF PSO, GSA, GWO AND CELLULAR AUTOMATION
Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving s...
متن کامل